提交 a3956a72 编写于 作者: zhenxin.ma's avatar zhenxin.ma

配置文件

上级 180bdf2f
package com.config
/**
* @Author zhenxin.ma
* @Date 2019/11/15 9:46
* @Version 1.0
*/
object MySQLConfig {
//集群hdfs127 Mysql配置,记录任务的执行情况
final val HDFS_DRIVER = "com.mysql.jdbc.Driver"
final val HDFS_BASE = "pica_job"
final val HDFS_URL = s"jdbc:mysql://hdfs127:3306/${HDFS_BASE}?useTimezone=true&serverTimezone=GMT%2B8&useUnicode=true&characterEncoding=utf8"
final val HDFS_USERNAME = "pica_spider"
final val HDFS_PSSWORD = "5$7FXgz#e5JWP08e"
final val HDFS_TABLE = "schedule_job_record"
final val HDFS_MSQL_CONFIG: Map[String,String] = Map("driver" -> "com.mysql.jdbc.Driver","url" -> "jdbc:mysql://hdfs127:3306/pica_job?useTimezone=true&serverTimezone=GMT%2B8&useUnicode=true&characterEncoding=utf8",
"username" -> "pica_spider","password" -> "5$7FXgz#e5JWP08e","table" -> "schedule_job_record")
//同步MYSQL线上环境账号配置
final val URL: String = "jdbc:mysql://rr-uf6p67797265cm09f.mysql.rds.aliyuncs.com:3306/pica" +
"?useTimezone=true&serverTimezone=GMT%2B8&characterEncoding=UTF-8&zeroDateTimeBehavior=convertToNull"
final val USER: String = "bi_readonly"
final val PSSWORD: String = "1Qaz2wsx"
final val MSQL_CONFIG: Map[String,String] = Map("driver" -> "com.mysql.jdbc.Driver","url" -> "jdbc:mysql://rr-uf6p67797265cm09f.mysql.rds.aliyuncs.com:3306/pica?useTimezone=true&serverTimezone=GMT%2B8&characterEncoding=UTF-8&zeroDateTimeBehavior=convertToNull",
"username" -> "bi_readonly","password" -> "1Qaz2wsx")
//同步MYSQLUAT环境账号配置
// final val URL: String = "jdbc:mysql://192.168.110.181:3306/pica" +
// "?useTimezone=true&serverTimezone=GMT%2B8&characterEncoding=UTF-8&zeroDateTimeBehavior=convertToNull"
// final val USER: String = "pica_test"
// final val PSSWORD: String = "pkv#sqvSGn@O1@tg"
}
package com.config
/**
* @Author zhenxin.ma
* @Date 2019/11/15 9:58
* @Version 1.0
*/
object SyncDataConfig {
//同步MYSQL数据导入到Hive中,线上环境,Hive库名
final val DATABASE1:String = "pica_ds"
final val DATABASE2:String = "pica_project_v2"
final val DATABASE3:String = "pica_ods"
final val DATABASE4:String = "pica_dw"
//线上Parquet文件路径
final val PARQUET_PATH: String = "hdfs://bi-name1:8020/tmp/output/"
//UAT环境,Hive库名
// final val DATABASE1:String = "pica_ds"
// final val DATABASE3:String = "pica_ods"
// final val DATABASE4:String = "pica_dw"
// final val DATABASE2:String = "pica_project"
// //UAT环境,Parquet文件路径
// final val PARQUET_PATH: String = "hdfs://master61:8020/tmp/output/"
//区域反推中间表数据目录
final val REGION_DATA_PATH: String = "/home/big-data/ods_parent_hospital_level/parent_hospital_level.txt"
final val REGION_BAD_PATH: String = "/home/big-data/ods_parent_hospital_level/bad.txt"
//区域反推中间表用到的SQL
final val REGION_SQL1: String =
s"""
| SELECT cd.project_id,cd.doctor_id,ppa.province_id,ppa.city_id,ppa.county_id,
| ppa.town_id FROM ${DATABASE1}.pica_portal_campaign_doctor cd
| INNER JOIN ${DATABASE4}.dw_dim_portal_project pj ON cd.project_id = pj.project_id
| INNER JOIN ${DATABASE3}.ods_basic_doctor_info d ON cd.doctor_id = d.doctor_id
| INNER JOIN ${DATABASE1}.pica_portal_project_attachregion ppa ON cd.project_id = ppa.project_id AND cd.doctor_id = ppa.doctor_id
| WHERE cd.delete_flag = 1 AND cd.doctor_role = 3 AND cd.doctor_type != 2
| AND date_format(cd.modified_time,'yyyy-MM-dd') <= date_sub(from_unixtime(unix_timestamp(),'yyyy-MM-dd'),1)
| AND d.delete_flag = 1 AND d.hospital_id != 0
| AND ppa.delete_flag = 1 AND ppa.content != ''
| AND date_format(ppa.modified_time,'yyyy-MM-dd') <= date_sub(from_unixtime(unix_timestamp(),'yyyy-MM-dd'),0)
""".stripMargin
final val REGION_SQL2: String = s"SELECT project_id,province_id,city_id,COALESCE(county_id,0) county_id,COALESCE(town_id,0) town_id " +
s"FROM ${DATABASE2}.lr_project_attachregion"
//Hive表名
final val Hive_TABLE: String = "pica_portal_campaign_mapping"
final val Hive_TABLE1: String = "pica_portal_campaign_doctor"
final val Hive_TABLE2: String = "pica_portal_campaign_organization"
final val Hive_TABLE3: String = "pica_portal_campaign_department"
final val Hive_TABLE4: String = "pica_portal_project_attachregion"
final val Hive_TABLE5: String = "lr_project_attachregion"
final val Hive_TABLE6: String = "attach_region_result"
final val Hive_TABLE7: String = "lr_project_sub_leader_attachregion"
//同步的MySQL表名
final val MYSQL_TABLE1: String = "portal_campaign_doctor_"
final val MYSQL_TABLE2: String = "portal_campaign_organization_"
final val MYSQL_TABLE3: String = "portal_campaign_department"
final val MYSQL_TABLE4: String = "portal_project_attachregion"
//以下是Spark读取Mysql时,设置的分区属性
final val PARTITIONCOLUMN: String = "id"
final val LOWERBOUND: String = "100"
final val UPPERBOUND: String = "20000000"
final val NUMPARTITIONS: String = "12"
//导入Hive语句
final val Hive_TABLE1_SQL: String = s"insert into table ${DATABASE1}.${Hive_TABLE1} " +
s"select id,project_id,doctor_id,doctor_role,doctor_role_flag,doctor_type," +
s"white_flag,id_type,delete_flag,created_id,created_time,modified_id,modified_time from "
final val Hive_TABLE2_SQL: String = s"insert into table ${DATABASE1}.${Hive_TABLE2} " +
s"select id,project_id,organization_id,organization_type," +
s"white_flag,scope_flag,id_type,delete_flag,created_id,created_time,modified_id,modified_time from "
}
Markdown 格式
0% or
您添加了 0 到此讨论。请谨慎行事。
先完成此消息的编辑!
想要评论请 注册